
Puppeteering: Media control data as material for
audiovisual creative innovation

Ilias Bergström

No current academic affiliation
ilias.bergstrom@gmail.com

Andre Holzapfel
KTH Royal Institute of Technology

holzap@kth.se

ABSTRACT

Millions of creative practitioners use advanced software to manipulate

a large diversity of digital materials. Their work forms a significant part

of the digital economy, where constant innovation is crucial. But

existing tools can impede innovation by limiting digital materials to

fixed media, e.g. musical notes, colours, coordinates or velocity. With

existing practice, programming is necessary to transcend such

restrictions, which limits the agency of most practitioners to shape their

technologies. This research introduces the concept of elevating media

control signals to be explicitly used as a material that end users directly

manipulate in their tools without requiring that they program.

The work is grounded in the observation that tools across contexts and

media share design patterns, and that those sharing many define a

genre. “Puppeteering” involves two roles: first, a rich user interface

application (Puppeteer) implementing a genre’s defining patterns, but

no media-specific functionality. The second role is taken by media-

specific tools (Puppets), remote-controlled by the puppeteer using

standardised control data messages (Strings). The concept empowers

craftworkers to manipulate and interrelate digital materials without

programming. We demonstrate puppeteering through an

implementation for time-based media software, with the purpose of

opening up for very rich possibilities of future research.

Author Keywords

Audio, Visual, Audiovisual, control data, control signals, materiality

CCS Concepts

• Applied computing → Sound and music computing; Performing

arts;

1. INTRODUCTION
Computer use is today ubiquitous in most contexts of skilled craftwork

[1]. Digital craftworkers include artists, designers, engineers,

scientists, and others. This research concerns the software tools they

employ, for “building and editing complex digital artefacts” [2].

Crucial for the knowledge economy is innovation, with important

advancements frequently being the outcome of User Innovation [3].

But tools reach built-in limitations that impede user innovation: Across

contexts, they constrain the manipulation of their digital material to

fixed media. Music making, video editing, and so on, each have their

own tools for their respective media. Sharing data and tools between

contexts and media is hard, meaning users are kept from using these in

ways their makers did not predict, unless they take to extensively

modifying these tools.

End-User Development (EUD) comprises the methods, techniques

and tools that allow users of software systems, to create, modify, or

extend a software artefact [4]. Tailoring features allow for increased

flexibility, but to transcend limitations to specific media, tailoring does

not suffice. The remaining recourse of programming is both difficult to

learn [5], and cognitively taxing to do [6], [7]. This present paper

addresses the above issues, by extending the reach of the existing

expertise digital craftworkers have of their tools.

Direct manipulation software tools have largely co-evolved, with

technical and usage characteristics migrating between them.

Users proficient with several tools, are therefore aware of

common patterns between these. The reason is today’s ubiquity

of Design Patterns for software [8] and user interfaces [9]:

general repeatable solutions to commonly occurring design

problems. Modern software is constructed through combining

several interrelating sets of patterns, in support of Patterns of Use

[10, p. 29] and of User Experience [11] .

A software Genre is defined as a set of software with many

common design patterns [12, p. 52]. The genre targeted here is

that of Time-Based Media Software, which encompasses tools

for sound, music, animation, video editing, show-control, etc.

There, craftworkers rarely directly manipulate their raw digital

material, i.e. the sensor data, audio, images, or video. What they

interact with is digital control data [13], subsequently used for

rendering the raw media output. Control data messages are also

used in interconnecting tools.

Building on the above, this research introduces Puppeteering: the

conception of direct manipulation software tools, which allow working

with the digital material of control data without media-specific

restrictions, by implementing a genre’s defining patterns in a

Puppeteer, and all media-specific features in Puppets. Puppeteering is

here specifically presented for the genre of time-based media software.

This extended abstract serves only as an introduction of the basic

concepts underlying a larger research project that can comprise a

multitude of contributions to a range of genres, beyond time-based

media software.

2. Concrete Implementation
There currently exists a mature implementation of the

Puppeteering concept, in the form of the “TWO” application

(puppeteer), and the “Mother” visual synthesis software

(puppet). To see a demonstration of these in use, please refer to

the videos on YouTube [14].

2.1 The Puppet: Mother
Mother is a software application for the performance of real-time

visuals [15], [16]. It provides only the bare-minimum necessary

functionality. Mother serves as a host for a tree-structure model of

visual-synthesis plug-ins, each of which draws graphics on the screen,

and/or modifies what has been drawn before it. Each synth plug-in is a

small program written in Processing, a programming language

intended to be used by artists [17] (Figure 1). Users can either make

such synths, or download and adapt shared ones. See (Figure 2) for an

example of the layering of several synths. When Mother is started, all

that appears is a blank display window - it is controlled exclusively

using remote control data, in the form of Open sound Control (OSC)

[13] messages. Mother is less than 3000 lines of code: a small project,

within the reach of an end-user programmer.

While it is deprecated at the time of writing, now that more capable

applications have emerged (Notch.one, Unreal Engine, Unity, VVVV,

etc.), we nonetheless use it to introduce the concept, because it has

featured in several earlier academic publications, and is quick to

explain.

NIME’24, September 4–6, 2024, Utrecht, The Netherlands

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

2nd Audiovisual Symposium 2024, December 6, 2024, Dalarna
Audiovisual Academy (DAVA), Dalarna University, Falun, Sweden.

Figure 1 - Minimal Processing sketch example

Figure 2 - Illustration of how several processing sketches

(top) are within Mother layered to produce a single complex

output

2.2 The Strings: OSC
OSC is central to making this work possible. It is a general control data

message protocol (Figure 3), intended for innovating electronic

musical instruments [13]. It has since received widespread adoption

also in robotics, show control, Internet of Things, etc. [18]. The great

advantage of OSC is that while there is a per-message schema, OSC

has no overall fixed schema to define or restrict the set of possible

messages, as is the case with legacy control data (e.g. MIDI, DMX). A

second advantage is that older protocols can be translated to and from

OSC data with relative ease. Third, OSC messages are self-descriptive:

just by looking at a message, a user can tell what it is for (Figure 4).

So messages can be received, manipulated and transmitted by software

that is unaware of the media-specific intent, if any.

Figure 3 - OSC namespace

Figure 4 - OSC messages for the namespace

2.3 The Puppeteer: TWO
TWO provides a range of functionalities, which together make

Puppeteering possible for time-based media software [19], [20].

In TWO, users manipulate model definitions, and control data.

Users directly work with OSC-like control signals. TWO is thus

not limited to any one kind of media. Any sender or recipient of

OSC can interact with it. Other control-data protocols (MIDI,

DMX), are translated to/from OSC.

Signals need only make sense to the user(s), and are recognized

and associated by user(s) to the particular context only through

the human readable OSC address-pattern (see Figure 3).

With TWO, a user can fully remote-control instances of Mother,

other Puppets, and/or any other compatible software. When

combined, Mother and TWO are not too dissimilar in use to a

software application where UI and core are integrated: A user can

edit the model tree (which in Mother is reflected as adding,

removing and rearranging synths), manipulate the properties of

model nodes (adjusting synth parameters), sequence changes of

many properties over time (animating the graphics), read and

write files with model and state descriptions, have external

devices connected for it to be remote-controlled, etc (see Figure

5 for the patterns common in time-based media software, and

Figure 6 for TWO’s GUI implementing these).

As the user manipulates model and control data in TWO, all

changes are immediately reflected in Mother’s visual output, like

in any other interactive GUI application. Nonetheless, neither

Mother nor TWO is explicitly aware of the other’s existence, and

while they work together seamlessly, they were not exclusively

made for each other.

Figure 5 - UI design patterns for time-based media software

Figure 6 - The TWO GUI, Illustrating the patterns implemented

Making any or all of these connections between namespaces is

what is referred to as Mappings [21]. Mapping is prevalent in

digital media, even if it is not always explicit to users. Unlike the

physical, fixed connections between the keys, hammers and

strings of a piano, the connections between a digital keyboard

instrument’s keys, knobs and sliders, to the sound generation

circuitry, are all mappings, and only one out of nearly infinite

possible alternatives. Through TWO’s Weighted Routing Matrix

(Figure 6, bottom right), such mappings can be defined, altered,

stored, recalled and shared by end-users. Mutable Mapping [19],

[20], being able to gradually alter mappings over time, plays a

central role in Puppeteering. Such manipulation is crucial in

fostering experimentation, and also a form of live performance.

The weighted matrix has a weight value in each cell. Each row is

a source, and for each column, a non-zero value cell means the

incoming value is multiplied with the weight, added with the

other column values, and sent to the column’s destination. For an

illustration, see Figure 7 and 8.

The flexibility of OSC presents new challenges. Since there is no

fixed set of messages, each participating server needs to know

what messages the servers it intends to communicate with react

to. And each of the messages a server generates, needs to be

mapped so that they correspond to the messages the recipients

expect. Schemata for describing OSC namespace, and server

states, have been introduced [22]. Together these allow servers

to know each other’s namespaces, without modification to the

original OSC specification. They also allow storing and recalling

to/from a file, the states of complex sets of servers, and sharing

Figure 8 – More complex example of routing and mapping

Figure 7 – Illustration of possible Mutable Mapping use

of such states between applications. OSCQuery further allows

the automatic runtime discovery of schemata and states [23].

3. CONCLUSIONS AND FUTURE WORK
Computing has quickly gone, from being the restricted domain of a

handful of scientists and government agents, to being ubiquitous in the

lives and work of large parts of the population. This progress is

accelerating at an exceptional rate, and there is no end to the shortage

of skilled programmers, AI notwithstanding.

This research aims to spur innovation. Given these tools and practices,

the possibility is opened up for end-users to innovate their own use-

cases, giving independence from how manufacturers envision that

their products should be used. And, while the tools enabling this

experimentation may not be taken up by non-craftworkers, the use-

cases that result are likely to be picked up by industry, and make their

way into consumer markets [3].

Puppeteering seems to be the logical next step in user interface design,

for the context of advanced users of time-based media software, but

possibly also other application areas. Historically, a pattern can be

observed:

1. A task is first tackled using low-level programming.

2. Then libraries appear which encapsulate some of the

complexity, making the task easier to program for.

3. Then, either scripting languages, or media-specific

programming languages may appear.

4. Only after several years would a dedicated piece of software

have crystallised, which allows the task to be carried out

without requiring programming.

Maybe abstract model and control data manipulation, will too in the

future be established as something end-users regularly do without

second thought?

4. ETHICAL STANDARDS
This research has been to significant extent been carried out

without institutional funding, by the article’s first author. There

are no conflicts of interest to note.

5. REFERENCES
[1] M. McCullough, Abstracting craft: The practiced digital

hand. MIT press, 1998.

[2] M. Duignan, “Computer mediated music production: A

study of abstraction and activity,” Doctoral Thesis, Victoria

University of Wellington, New Zealand, 2008.

[3] E. Von Hippel, “Democratizing innovation: The evolving

phenomenon of user innovation,” Journal für

Betriebswirtschaft, vol. 55, pp. 63–78, 2005.

[4] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, “End-

User Development: An Emerging Paradigm,” in End User

Development, H. Lieberman, F. Paternò, and V. Wulf, Eds.,

in Human-Computer Interaction Series, no. 9. , Springer

Netherlands, 2006, pp. 1–8. Accessed: May 25, 2015.

[Online]. Available:

http://link.springer.com/chapter/10.1007/1-4020-5386-

X_1

[5] J. Bennedsen and M. E. Caspersen, “Failure rates in

introductory programming,” AcM SIGcSE Bulletin, vol. 39,

no. 2, pp. 32–36, 2007.

[6] A. F. Blackwell, “What is programming?,” presented at the

PPIG, Citeseer, 2002, pp. 204–218.

[7] J. Spolsky and J. Spolsky, “Human task switches

considered harmful,” Joel on Software: And on Diverse and

Occasionally Related Matters That Will Prove of Interest to

Software Developers, Designers, and Managers, and to

Those Who, Whether by Good Fortune or Ill Luck, Work

with Them in Some Capacity, pp. 179–182, 2004.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

patterns : elements of reusable object-oriented software, 1st

ed. Addison Wesley, 1994.

[9] J. Tidwell, Designing interfaces. O’Reilly Media, Inc.,

2010.

[10] T. Schummer and S. Lukosch, Patterns for computer-

mediated interaction. John Wiley & Sons, 2013.

[11] A. F. Blackwell and S. Fincher, “PUX: patterns of user

experience,” Interactions, vol. 17, no. 2, pp. 27–31, 2010.

[12] Å. Walldius, Patterns of recollection: The documentary

meets digital media. Aura förlag, 2001.

[13] M. Wright, A. Freed, and A. Momeni, “OpenSound

Control: state of the art 2003,” in Proceedings of the 2003

conference on New interfaces for musical expression, 2003,

pp. 153–160.

[14] I. Bergström, “TWO: Media Control Workstation.”

[Online]. Available:

https://www.youtube.com/@TwoMediaControlWorkstatio

n

[15] I. Bergstrom and B. Lotto, “Mother: Making the

Performance of Real-Time Computer Graphics Accessible

to Non-programmers,” in (re)Actor3: The Third

International Conference on Digital Live Art Proceedings,

Sep. 2008, pp. 11–12.

[16] I. Bergstrom and B. Lotto, “Code-bending: a new creative

coding practice,” Leonardo, no. In Press, 2014.

[17] C. Reas and B. Fry, Processing: A Programming Handbook

for Visual Designers and Artists. The MIT Press, 2007.

[18] A. Freed and A. Schmeder, “Features and future of open

sound control version 1.1 for nime,” in NIME’09:

Proceedings of the 9th Conference on New Interfaces for

Musical Expression, 2009.

[19] I. Bergstrom, A. Steed, and B. Lotto, “Mutable Mapping:

gradual re-routing of OSC control data as a form of artistic

performance,” in Proceedings of the international

conference on Advances in computer entertainment

technology, Athens, Greece, Oct. 2009, pp. 290–293.

[20] I. Bergstrom, “Soma: live performance where congruent

musical, visual, and proprioceptive stimuli fuse to form a

combined aesthetic narrative,” Thesis, 2011. Accessed:

Oct. 10, 2011. [Online]. Available:

http://discovery.ucl.ac.uk/1310143/

[21] E. R. Miranda and M. M. Wanderley, New Digital Musical

Instruments: Control And Interaction Beyond the

Keyboard. AR Editions, 2006.

[22] I. Bergstrom and J. Llobera, “OSC-Namespace and OSC-

State: Schemata for Describing the Namespace and State of

OSC-Enabled Systems,” in 2014, London, 2014. Accessed:

Feb. 16, 2015. [Online]. Available:

http://www.nime.org/proceedings/2014/nime2014_300.pd

f

[23] “OSCQuery,” OSCQuery. [Online]. Available:

https://github.com/Vidvox/OSCQueryProposal

