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ABSTRACT

This paper introduces a method for generating dynamic au-
diovisual landscapes by applying a series of discrete-time
chaotic systems to wave terrain synthesis (WTS). Chaotic
oscillators are known for their sensitive dependence on ini-
tial conditions and their tendency to produce complex be-
haviors—often at the risk of overloading audio engines. This
research proposes using these chaotic systems for terrain
generation by plotting them as 3D height maps, avoiding
the typical pitfalls of instability rather than direct sound
production which is commonly the focus of music and chaos
related research. This approach also preserves the timbral
richness of chaotic behavior while offering improved har-
monic synthesis when periodic waveforms are used to read
from the terrain. Beyond sound synthesis for electronic mu-
sic, chaotic height maps offer opportunities for visual repre-
sentation, making the system both an auditory and visual
instrument. This paper positions chaotic wave terrain syn-
thesis within the broader context of interdisciplinary audio-
visual research areas, such as sound design and data visu-
alization, and is part of an ongoing project (IRESAP) con-
cerned with strategies incorporating current music informa-
tion retrieval techniques and audiovisual artistic practices.
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1. CHAOTIC SYSTEMS
Chaotic systems are dynamic systems described by non-
linear ordinary differential equations, where nonlinearity is
essential for chaotic behavior. Beyond their theoretical in-
terest, chaotic systems have practical applications across
physics, biology, engineering, economics, and music [16].
One example is the Thomas System, which demonstrates
how certain parameter values create complex patterns known
as strange attractors, or a set of states toward which a sys-
tem tends to evolve (Figure 1). While these systems may
sometimes appear unpredictable, they are not random; they
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Figure 1: The Thomas System exhibiting states that demon-
strate strange attractors.

follow deterministic rules and are highly sensitive to their
initial conditions. These key characteristics set them apart
from linear or predictable systems; this project focuses par-
ticularly on the nonlinearity, deterministic nature, sensi-
tivity to initial conditions, and strange attractors of these
systems [5].

Computer music researchers began exploring discrete-time
chaotic systems based on differential equations in the late
1980s and early 1990s, leading to various applications, from
control-rate parameter manipulation [20] to audio-sampling
rate oscillation for complex timbres [15]. Chaotic systems
have also been mapped and quantized to produce MIDI note
sequences [9]. However, these systems are known for being
unstable and can easily overload audio engines, requiring
re-instantiation to proceed with sound production. Several
strategies to address this challenge have been proposed, in-
cluding connecting chaotic systems to digital waveguides
[19], chaotic sound spatialization [17], or using bounding
and clipping functions to maintain stability [14]. Recently,
researchers have focused on using chaotic equations to in-
fluence audio inputs rather than directly synthesizing sound
[8]. Due to these inherent issues, chaotic systems are often
seen as having “razor-thin” musical applications [1].

Chaotic oscillators also struggle to produce harmonic tones
due to their aperiodicity, which prevent them from gener-
ating cycles that decompose into harmonic components [6].



Unlike traditional oscillators that produce stable, periodic
waveforms, chaotic oscillators produce signals that are in-
herently unstable. This lack of periodicity means that the
typical harmonic series—an orderly stack of integer mul-
tiples of a fundamental frequency—is disrupted, making it
nearly impossible for chaotic oscillators to generate the kind
of harmonic structure that traditional tonal music relies
upon. Instead, chaotic oscillators are better suited for noise-
based, non-linear synthesis or non-western music practices
[7]. As a result, chaotic oscillators excel in experimental
sound design, where rich, evolving textures take precedence
over harmonic clarity and predictability.

2. WAVE TERRAIN SYNTHESIS
Wave Terrain Synthesis (WTS) is a sound synthesis tech-
nique that traces a trajectory across a three-dimensional
surface, or “terrain,” using the resulting height values to
generate audio. In essence, WTS uses a 3D surface as a
lookup table: coordinates on the terrain serve as inputs,
and the height at each point represents amplitude. De-
spite its broad scope and limited research, WTS is often
situated within the realms of wavetable synthesis [13], FM
synthesis [11], waveshaping and distortion synthesis [4], and
wavetable cross-multiplication (e.g., ring modulation) [2].

Figure 2: A sinusoidal oscillator that forms a circle in (x,y)-
space (left) and a 3D height map in (x,y,z)-space (right).

Consider the periodic sinusoidal oscillator in Figure 2,
which traces a circular series of points in (x,y)-space, with
the x- and y-coordinates generating independent sinusoidal
outputs. In (x,y,z)-space, where the z-coordinate is the sum
of the x- and y-amplitudes, a 2D audio signal is transformed
into a 3D height map. Reading from a height map is anal-
ogous to rolling a ball over a hilly landscape [12]. Both the
terrain and the path by which the ball moves over the land-
scape are defined independently of one another. However,
both structures are mutually dependent in finding an out-
come, and any changes that occur in either system affect
the resulting waveform [10].
Height maps are often generated using basis functions,

such as the Wave Terrain Synthesis package for Max by
Timo Hoogland at IRCAM, which supports polar and Carte-
sian lookup.1 Few software tools exist for wave terrain
synthesis, leading many to develop their own. Max in-
cludes the linear terrain∼ object in the PeRColate library
[18], and 2d.wave∼ offers a two-variable wavetable for scan-
ning trajectories [21]. Additionally, the MacOS applica-
tion DrawJong 2.0 can visualize and sonify a wide range
of chaotic systems [9]. Hardware applications are rarer,
but one example is Samuel Carswell’s Eurorack WTS mod-
ule, which enables voltage-controlled trajectory specifica-
tion and CV output [3].

1https://forum.ircam.fr/projects/detail/wave-terrain-
synthesis/

3. IMPLEMENTATION
This section presents a series of six (6) chaotic systems rep-
resented in both (x,y) and (x,y,z)-space. These system were
chosen based on their visual appeal from an online reposi-
tory for chaotic systems.2 In cases where the systems pro-
duce an (x,y,z) output—such as the Hindmarsh-Rose At-
tractor—only the (x,y)-coordinates are taken and used to
generate terrains. For each system, a brief description and
its equation are introduced. The image of each system in-
cludes its 2D and 3D height map representations, along with
the initial state for the variables defined in each equation.
Each of these systems were implemented in gen∼, an em-
bedded environment in Max that processes audio at the
audio sampling rate rather than the vector rate.3

Visualizing a height map is accomplished using Jitter ma-
trices in Max, which enables video processing and graphics
rendering.4 Each map captures a static “snapshot” of n
samples from the chaotic system, requiring the oscillators
to only function temporarily. This allows for saving and re-
calling presets, reducing instability associated with chaotic
oscillators. Once created, each dimension of the map can be
independently scaled or otherwise modified without relying
on the oscillators. Two maps can also be interpolated to
generate hybrid timbres. Although maps can dynamically
change as the system oscillates, doing so risks audio engine
overload. When the lookup method for a terrain is peri-
odic, harmonicity is preserved, allowing the system’s rich,
nonlinear dynamics to be heard in the resulting overtones.

3.1 Duffing System
The Duffing system (Figure 3) is a type of dynamical sys-
tem that models non-linear oscillatory behavior, often used
to describe forced damped oscillators with a non-linear stiff-
ness component. Its behavior can transition from periodic
to chaotic, depending on parameters like the strength of the
forcing and the level of damping.

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt)

Figure 3: A Duffing Attractor (left) and 3D height map
(right) using coefficients δ = 0.5, α = 1, β = 0.1, γ = 1000,
ω = 123, t = 0.001, with starting variable x = 0.

3.2 Hindmarsh-Rose System
The Hindmarsh-Rose system (Figure 4) is a mathematical
model used to describe the electrical activity of neurons,
particularly their spiking and bursting behaviors. It’s a
simplified version of more complex neuron models like the
Hodgkin-Huxley model, but it’s still rich enough to capture
the chaotic dynamics of neuronal firing.

2http://www.3d-meier.de/tut19/Seite0.html
3https://docs.cycling74.com/max8/refpages/gen
4https://cycling74.com/products/jitter



ẋ = y − ax3 + bx2 − z + I

ẏ = c− dx2 − y

ż = r (s(x− x0)− z)

Figure 4: A Hindmarsh-Rose Attractor (left) and 3D height
map (right) using coefficients a = 0.49, b = 1, c = 0.0322, d
= 1, s = 1, v = 0.8, u = 0.03, with starting variables (x,y,z)
= 0.1.

3.3 Lorenz System
The Lorenz system (Figure 5) is a set of three differen-
tial equations that describe chaotic behavior in a simplified
model of atmospheric convection. Developed by Edward
Lorenz in the 1960s, this system is one of the most famous
examples of chaos theory, illustrating how small changes in
initial conditions can lead to vastly different outcomes.

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

Figure 5: A Lorenz Attractor oscillator (left) and 3D
height map (right) using coefficients σ = 36, ρ = 49,
β = 2.666667, x = 0.1, with starting variables (y, z) = 0.

3.4 Peter de Jong System
The Peter de Jong systems (Figure 6) is a chaotic system
that generates intricate, often nature-like patterns through
simple recursive equations. Its adjustable parameters pro-
duce visually striking results, making it popular in gener-
ative art. Artists and scientists alike use it for visualizing
complex systems and creating audio-visual works with dy-
namic, chaotic mappings.

xn+1 = sin(ayn) + c cos(axn)

yn+1 = sin(bxn) + d cos(byn)

Figure 6: A Peter de Jong Attractor oscillator (left) and 3D
height map (right) using coefficients a = 1.641, b = 1.902, c
= 0.316, d = 1.512 with starting variables (x,y) = 1.

3.5 Thomas System
The Thomas system (Figure 7) is a chaotic attractor de-
fined by a set of differential equations that generate swirling,
cloud-like patterns. Its behavior results in complex struc-
tures that are popular in visualizations of chaotic dynam-
ics. Artists and scientists use the Thomas system to explore
chaotic motion and visualize turbulent flows.

ẋ = −bx+ sin(y),

ẏ = −by + sin(z),

ż = −bz + sin(x),

Figure 7: A Thomas Attractor oscillator (left) and 3D height
map (right) using coefficients b = 0.19, x = 0.44, y = 0.21,
with starting variables z = −0.56.

3.6 Tinkerbell System
The Tinkerbell system (Figure 8) is a simple chaotic map,
named for the whimsical patterns it can produce, resem-
bling a butterfly or fairy-like figure. It is a two-dimensional
discrete dynamical system that exhibits chaotic behavior
under certain conditions.

xn+1 = x2
n − y2

n + axn + byn

yn+1 = 2xnyn + cx2
n + dy2

n

4. CONCLUSIONS AND FUTURE WORK
This paper has introduced the use of chaotic systems as
3D height maps in the context of wave terrain synthesis,
providing a sound synthesis method that avoids the insta-
bility of chaotic oscillators in direct audio production. By
using chaotic systems to shape terrains instead of gener-
ating sound directly, the complexity of chaotic behavior is
preserved while offering improved harmonic synthesis. This
technique not only expands possibilities for sound design
but also enhances audiovisual performance, deepening the
connection between visual and auditory elements. Future



Figure 8: A Tinkerbell Attractor oscillator (left) and 3D
height map (right) using coefficients a = -0.3, b = -0.6, c
= 2, d = -0.27 with starting variables x = -0.72 and y =
-0.64.

work will explore additional chaotic systems and develop
open-source tools to make this synthesis method more ac-
cessible to musicians and multimedia artists, expanding cre-
ative potential across sound and visual art practices and
enriching interdisciplinary research.
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